Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1044446.v1

ABSTRACT

Since spring 2020, Ukraine has experienced at least two COVID-19 waves and has just entered a third wave in autumn 2021. The use of real-time genomic epidemiology has enabled the tracking of SARS-CoV-2 circulation patterns worldwide, thus informing evidence-based public health decision making, including implementation of travel restrictions and vaccine rollout strategies. However, insufficient capacity for local genetic sequencing in Ukraine and other Lower and Middle-Income countries limit opportunities for similar analyses. Herein, we report local sequencing of 24 SARS-CoV-2 genomes from patient samples collected in Kyiv in July 2021 using Oxford Nanopore MinION technology. Together with other published Ukrainian SARS-COV-2 genomes sequenced mostly abroad, our data suggest that the second wave of the epidemic in Ukraine (February-April 2021) was dominated by the Alpha variant of concern (VOC), while the beginning of the third wave has been dominated by the Delta VOC. Furthermore, our phylogeographic analysis revealed that the Delta variant was introduced into Ukraine in summer 2021 from multiple locations worldwide, with most introductions coming from Central and Eastern European countries. This study highlights the need to urgently integrate affordable and easily-scaled pathogen sequencing technologies in locations with less developed genomic infrastructure, in order to support local public health decision making.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.26.20219642

ABSTRACT

Identifying linked cases of infection is a key part of the public health response to viral infectious disease. Viral genome sequence data is of great value in this task, but requires careful analysis, and may need to be complemented by additional types of data. The Covid-19 pandemic has highlighted the urgent need for analytical methods which bring together sources of data to inform epidemiological investigations. We here describe A2B-COVID, an approach for the rapid identification of linked cases of coronavirus infection. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and novel approaches to genome sequence data to assess whether or not cases of infection are consistent or inconsistent with linkage via transmission. We apply our method to analyse and compare data collected from two wards at Cambridge University Hospitals, showing qualitatively different patterns of linkage between cases on designated Covid-19 and non-Covid-19 wards. Our method is suitable for the rapid analysis of data from clinical or other potential outbreak settings.


Subject(s)
COVID-19 , Coronavirus Infections , Communicable Diseases
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-79022.v1

ABSTRACT

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the successful use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. His unusual clinical course identifies a key role for SARS-CoV-2 antibodies in both viral clearance and progression to severe disease. In the absence of these confounders, we took an experimental medicine approach to examine the in vivoutility of remdesivir. Over two independent courses of treatment, we observed a dramatic, temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide unambiguous evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Genetic Diseases, X-Linked
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.26.20182279

ABSTRACT

Background COVID-19 poses a major challenge to infection control in care homes. SARS-CoV-2 is readily transmitted between people in close contact and causes disproportionately severe disease in older people. Methods Data and SARS-CoV-2 samples were collected from patients in the East of England (EoE) between 26th February and 10th May 2020. Care home residents were identified using address search terms and Care Quality Commission registration information. Samples were sequenced at the University of Cambridge or the Wellcome Sanger Institute and viral clusters defined based on genomic and time differences between cases. Findings 7,406 SARS-CoV-2 positive samples from 6,600 patients were identified, of which 1,167 (18.2%) were residents from 337 care homes. 30/71 (42.3%) care home residents tested at Cambridge University Hospitals NHS Foundation Trust (CUH) died. Genomes were available for 700/1,167 (60%) residents from 292 care homes, and 409 distinct viral clusters were defined. We identified several probable transmissions between care home residents and healthcare workers (HCW). Interpretation Care home residents had a significant burden of COVID-19 infections and high mortality. Larger viral clusters were consistent with within-care home transmission, while multiple clusters per care home suggested independent acquisitions.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.09.20082909

ABSTRACT

Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3-week period (April 2020), 1,032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19) >7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B{middle dot}1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff.


Subject(s)
COVID-19 , Agricultural Workers' Diseases
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.29.009464

ABSTRACT

Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short to medium chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro , ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and SARS-CoV-1 pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo , ViroSAL significantly inhibited Zika and Semliki Forest Virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be via surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for prevention and/or treatment of a broad range of enveloped viruses.


Subject(s)
Vesicular Stomatitis
SELECTION OF CITATIONS
SEARCH DETAIL